Blood Grouping

Grouping

Presenter: Dr. Popy Rani Paul Lecturer Department of Physiology

Type O

Blood Grouping

- □ Is the system of typing blood of a specific person into a particular type due to the presence or absence of a specific (inherited) **agglutinogen** on the membrane of RBC of that person
- Before giving a transfusion it is necessary to determine the blood group of the **recipient** and the group of the **donor** blood so, that the blood will be appropriately matched

□ Aim of Blood Grouping---

- To identify individuals blood group
- To identify positive or negative blood group
- > To avoid hazards of mismatch blood transfusion

Major Blood Group System

ABO Blood Group System:

Based upon presence or absence of group specific substance (inherited) or **agglutinogen** or **antigen** on the surface of RBC membrane

Rh Blood Group System:

Based upon presence or absence of **Rh agglutinogen** or **antigen** on the surface of RBC membrane

Cross Matching

□ The donors blood cells and the recipients plasma are directly tested against each other to determine whether **agglutination** occur or not is called cross matching

□ Aim of cross matching----

* To screen for antibodies and determine donor-recipient

compatibility

Major Blood Groups

- ABO blood groups:
- Discovered by Karl Landsteiner in 1900
- ➤ ABO blood group consists of—
 - * two antigens (A & B) on the surface of the RBC
 - * two antibodies in the plasma (Anti-A or α & Anti-B or β)

Reciprocal relationship between ABO antigens and antibodies

Antigen on RBCs	Antibody in plasma	Blood group
A	Anti-B	A (42%)
В	Anti-A	B (9%)
AB	None	AB (3%)
None	Anti-A & Anti-B	O (46%)

480 Antigens & Corresponding Antibodies

	Group A	Group B	Group AB	Group O
Red blood cell type		B	B	
Antibodie present	s Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens present	P A antigen	† B antigen	P† A and B antigens	None

ABO Agglutinogen Or Antigen

- Blood group antigens are actually **sugars** attached to the external surface of red cell membrane
- □ These antigens are ---
 - -- unique to individuals
 - -- recognized as **foreign** if transfused into another individual
 - -- promote **agglutination** of red cells if combine with corresponding antibody
- □ Individuals inherit a **gene** which codes for specific sugar (S) to be added to the red cell
- The type of sugar added determines the blood group

ABO Agglutinogen Or Antigen Cont..

Development at birth----

- ➤ All the ABO antigens develops as early as 6th week of fetal life
- > Their concentration at birth is one fifth the adult level & it progressively rises during puberty and adolescence
- Red cell of new born carry 25 -50% of number of antigenic sites found on adult RBC
- A or B antigen expression fully developed at 2-4 years of age & remain constant throughout life

ABO Agglutinin Or Antibody

- Anti-A and Anti-B antibodies are not present in new born
- Only 50% of new born have demonstrable agglutinin & this has simply filtered across the placenta from mother
- The specific agglutinin appear at 10 days, rise to a peak at 10 years and then decline

Landsteiner's Law

Consists of two parts-

First part:

If an agglutinogen is present in the cell membrane of RBC, the corresponding agglutinin must be absent in the plasma

Second part:

If an agglutinogen is absent in the cell membrane of RBC, the corresponding agglutinin must be present in plasma (exception in case of Rh blood group)

Inheritance Of ABO Blood Groups

- The four classical blood groups depend on three genes— A, B
 & O
- > Two genes inherited, one from each parent
- ➤ Gene A & B demonstrated by the use of Anti-A or Anti-B serum
- > The presence of O gene is not easily demonstrated
- > To Anti-A serum genotype AA (Homozygous) & AO (Heterozygous) demonstrated
- Similarly, to Anti-B serum genotype BB (Homozygous) & BO (Heterozygous) demonstrated

Example Of Determining Genotype

Genotype	Phenotype
AA & AO	Group A
BB & BO	Group B

- > Phenotype is the actual expression of the genotype
- Genotype are the actual inherited genes which can only be determined by family studies
- ➤ A child must receive one of three possible genes (A, B or O) from each parent
- > Further, each parent can transfers one or two genes to the child

Other Examples

Mother	Father	Offspring Blood Group
AA	BB	100% AB
ВО	OO	50% each of B or O
OO	OO	100% O
OO	AO	50% each of A or O

Rh Blood Group System

Rh Blood Group System

- Based upon presence or absence of **Rh antigen** on the RBC membrane
- □ Consists of −
 - Rh positive blood group
 - Rh negative blood group
- □ Rh positive due to **presence** of Rh antigen on the red cell membrane
- □ Rh negative due to **absence** of Rh antigen on the red cell membrane

Rh Agglutinogen Or Antigen

- Rh-antigen are a group of agglutinogens which are also present on the RBC membrane in addition to classical A & B agglutinogens
- These antigens are usually present in about 85% of the population & absent in 15% of the population
- These antigens are C, D, E, c, d, e of which **D** is common & most important

Rh Agglutinogen Or Antigen Cont---

- Unlike ABO antigens, Rh antigens are present only on red blood cells
- The D antigen is very immunogenic i.e- individual exposed to it will very likely make an antibody to it.
- Rh-antigen may be of severe problem when a mother with Rhnegative blood is having a fetus with Rh-positive blood.

Rh Antibody OR Anti-D

- All Rh antibodies are immune in nature, developed after immunization event
- Unlike the ABO system, individuals who lack the D antigen do not naturally produce Anti-D
- Production of antibody to D requires exposure to the antigen
- For this reason all individuals are typed for D, if negative must receive Rh (D) negative blood
- Most are IgG in nature and therefore can cross the placenta

Inheritance Of Rh Blood Group

- > A Rh gene is inherited from both father & mother
- If gene 'D' is carried by both sperm (male) & ovum (female) the resulting gene composition (Genotype) of the offspring is 'DD'
- ➤ If 'D' & 'd' then it will be 'Dd'
- ➤ If 'd' & 'd' the it will be 'dd'
- > 'DD' (called homozygous) & 'Dd' (called heterozygous) are both called Rh positive
- 'dd' (homozygous) is called Rh negative

Inheritance Of Rh Blood Group Cont ---

- Homozygous father of genotype 'DD' all the sperm contain 'D'
- Heterozygous father of genotype 'Dd' half the sperm contain 'D' & half 'd'
- > Same in case of female

Universal Donor & Universal Recipient

The persons having blood group "O" are said to be universal donor as they contains no agglutinogens in their RBC membrane but having both the agglutinins $\alpha \& \beta$ in the plasma

■The persons having blood group "AB" are said to be universal receipient as they contains both the agglutinogens A & B in their RBC membrane but no agglutinins in the plasma

Donor & Recipient Interaction

Compatible donor (no hemolysis)	Recipient
Group A & O	Group A
Group B & O	Group B
Group A, B, AB & O	Group AB
Group O	Group O

Bombay Blood group

- Very rare
- Since the first case was detected in Mumbai (then Bombay), the blood group came to be called as Bombay blood group
- ▶ H is the precursor of A and B antigen
- These people lack H, along with A and B antigen but plasma contains anti A, anti B and anti H
- Incompatible with all ABO blood groups

Gwada Negative Blood Group

- Newly identified blood type
- Designed as 48th blood group system by the International Society Of Blood Transfusion (ISBT)
- ▶ Characterized by the absence of the EMM antigen on RBC
- ▶ EMM antigen, a high incidence Ag found on nearly all human RBC
- The unique blood type is result of a genetic mutation in the PIGZ gene which is involved in creating a specific sugar molecule on RBCs

Gwada Negative

Incompatibility

- □ Incompatibility means mismatching i.e- a person with a specific blood group is transfused with blood of different group which causes mild to severe problems
- □ There are two types of incompatibility—
 - ABO incompatibility
 - Rh incompatibility
- Of which Rh incompatibility have much more clinical importance

Rh Incompatibility

- Rh-incompatibility means exposure of Rh-positive blood with Rh-negative blood which may occur either during transfusion or intra-uterinely in case of Rh-positive fetus with a Rh-negative mother
- □ There are two common menifestation of Rh-incompatibility or hemolytic disease of new born
 - * Hydrops fetalis
 - * Erythroblastosis fetalis
- □ These two conditions occur when mother with Rh-negative blood is pregnant & the fetus is Rh-positive

ABO Incompatibility

- ➤ ABO incompatibility between mother & fetus rarely cause problems because Anti-A & Anti-B antibodies are too large to cross the placenta
- > ABO incompatibility between mother & fetus always prevents Rhesus immunization of the mother
- Explanation- Rh positive fetal cells cross into the maternal circulation are destroyed by the mothers naturally occurring Anti-A or Anti-B before they have had to stimulate the production of Rh antibody

Hazards Of Blood Transfusion

***** Immediate reaction:

- * Pyogenic reaction
- * Allergic reaction
- * Anaphylactic reaction
- * Haemolytic transfusion reaction
- * Circulatory over load
- * Biochemical upset following massive transfusion
- * Generalized bleed tendency
- * Air embolism
- * Bacterial contamination of blood

Hazards Of Blood Transfusion Cont---

Delayed reaction:

- * Transmission of diseases-
 - AIDS
 - Hepatitis
 - Syphilis
 - Malaria etc.
- * Sensitization
- * Delayed haemolyic reaction
- * Multiple micro embolism
- * Transfusion of toxic substances from the plastic bag
- * Thrombophlebitis

Hazards Of Mismatched Blood Transfusion

□ Immediate effects:

* Red blood cells are agglutinated & clumped thus blocking the capillaries leads to violent pain in the back or tightness in the chest, nausea, vomiting, shivering etc.

Delayed effects:

- * Inapparent haemolysis due to agglutination & subsequent phagocytosis of clumped RBC
- * **Post-transfusion jaundice -** due to excessive destruction of RBC, bilirubin concentration increases in blood thus causing jaundice

Hazards Of Mismatched Blood Transfusion Cont --

* Acute renal shut down -

- due to antigen-antibody reaction, toxic substances are released which causes vasoconstriction of renal vessels thus renal shut down occurs
- due to haemolysis of RBC, blockage of renal tubules occur by free haemoglobin which may also cause renal shut down
- due to excessive breakdown of RBC, haemoglobinuria & subsequent renal failure may also occur

